Least-Squares Solutions of Generalized Sylvester Equation with Xi Satisfies Different Linear Constraint
نویسندگان
چکیده
منابع مشابه
Least-Squares Solutions of Generalized Sylvester Equation with Xi Satisfies Different Linear Constraint
In this paper, an iterative method is constructed to find the least-squares solutions of generalized Sylvester equation A X B A X B A X B A X B C 1 1 1 2 2 2 3 3 3 4 4 4 + + + = , where [ ] X X X X 1 2 3 4 , , , is real matrices group, and i X satisfies different linear constraint. By this iterative method, for any initial matrix group ( ) ( ) ( ) ( ) X X X X 0 0 0 0 1 2 3 4 , , , withi...
متن کاملIterative least-squares solutions of coupled Sylvester matrix equations
In this paper, we present a general family of iterative methods to solve linear equations, which includes the well-known Jacobi and Gauss–Seidel iterations as its special cases. The methods are extended to solve coupled Sylvester matrix equations. In our approach, we regard the unknown matrices to be solved as the system parameters to be identified, and propose a least-squares iterative algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Linear Algebra & Matrix Theory
سال: 2016
ISSN: 2165-333X,2165-3348
DOI: 10.4236/alamt.2016.62008